Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cells ; 11(9)2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563809

RESUMO

Mesenchymal stem cells (MSC) have emerged as a promising tool to treat inflammatory diseases, such as inflammatory bowel disease (IBD), due to their immunoregulatory properties. Frequently, IBD is modeled in mice by using dextran sulfate sodium (DSS)-induced colitis. Recently, the modulation of autophagy in MSC has been suggested as a novel strategy to improve MSC-based immunotherapy. Hence, we investigated a possible role of Pacer, a novel autophagy enhancer, in regulating the immunosuppressive function of MSC in the context of DSS-induced colitis. We found that Pacer is upregulated upon stimulation with the pro-inflammatory cytokine TNFα, the main cytokine released in the inflammatory environment of IBD. By modulating Pacer expression in MSC, we found that Pacer plays an important role in regulating the autophagy pathway in this cell type in response to TNFα stimulation, as well as in regulating the immunosuppressive ability of MSC toward T-cell proliferation. Furthermore, increased expression of Pacer in MSC enhanced their ability to ameliorate the symptoms of DSS-induced colitis in mice. Our results support previous findings that autophagy regulates the therapeutic potential of MSC and suggest that the augmentation of autophagic capacity in MSC by increasing Pacer levels may have therapeutic implications for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Autofagia , Colite/tratamento farmacológico , Colite/terapia , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
2.
Neuropharmacology ; 183: 108394, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33188842

RESUMO

The complexity of oxytocin-mediated functions is strongly associated with its modulatory effects on other neurotransmission systems, including the serotonin (5-hydroxytryptamine, 5-HT) system. Signalling between oxytocin (OT) and 5-HT has been demonstrated during neurodevelopment and in the regulation of specific emotion-based behaviours. It is suggested that crosstalk between neurotransmitters is driven by interaction between their specific receptors, particularly the oxytocin receptor (OTR) and the 5-hydroxytryptamine 2C receptor (5-HTR2C), but evidence for this and the downstream signalling consequences that follow are lacking. Considering the overlapping central expression profiles and shared involvement of OTR and 5-HTR2C in certain endocrine functions and behaviours, including eating behaviour, social interaction and locomotor activity, we investigated the existence of functionally active OTR/5-HTR2C heterocomplexes. Here, we demonstrate evidence for a potential physical interaction between OTR and 5-HTR2Cin vitro in a cellular expression system using flow cytometry-based FRET (fcFRET). We could recapitulate this finding under endogenous expression levels of both receptors via in silico analysis of single cell transcriptomic data and ex vivo proximity ligation assay (PLA). Next, we show that co-expression of the OTR/5-HTR2C pair resulted in a significant depletion of OTR-mediated Gαq-signalling and significant changes in receptor trafficking. Of note, attenuation of OTR-mediated downstream signalling was restored following pharmacological blockade of the 5-HTR2C. Finally, we demonstrated a functional relevance of this novel heterocomplex, in vivo, as 5-HTR2C antagonism increased OT-mediated hypoactivity in mice. Overall, we provide compelling evidence for the formation of functionally active OTR/5-HTR2C heterocomplexes, adding another level of complexity to OTR and 5-HTR2C signalling functionality. This article is part of the special issue on Neuropeptides.


Assuntos
Ocitocina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de Ocitocina/metabolismo , Animais , Escala de Avaliação Comportamental , Encéfalo/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptor Cross-Talk , Serotonina , Antagonistas do Receptor 5-HT2 de Serotonina , Transdução de Sinais
3.
Biol Res ; 49: 2, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739707

RESUMO

BACKGROUND: Vibrio parahaemolyticus (V. parahaemolyticus) is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis), characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL) expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization. RESULTS: We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7) adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain. CONCLUSIONS: MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus.


Assuntos
Adesinas Bacterianas/análise , Aderência Bacteriana/fisiologia , Lacticaseibacillus rhamnosus/fisiologia , Vibrio parahaemolyticus/patogenicidade , Biofilmes/crescimento & desenvolvimento , Células CACO-2 , Linhagem Celular , Citotoxicidade Imunológica , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Violeta Genciana , Humanos , Reação em Cadeia da Polimerase , Vibrioses/prevenção & controle , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/metabolismo
4.
Biol. Res ; 49: 1-10, 2016. ilus, graf
Artigo em Inglês | LILACS | ID: lil-774429

RESUMO

BACKGROUND: Vibrio parahaemolyticus (V. parahaemolyticus) is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis), characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL) expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization RESULTS: We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7) adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain CONCLUSIONS: MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus.


Assuntos
Humanos , Adesinas Bacterianas/análise , Aderência Bacteriana/fisiologia , Lacticaseibacillus rhamnosus/fisiologia , Vibrio parahaemolyticus/patogenicidade , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Citotoxicidade Imunológica , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Violeta Genciana , Reação em Cadeia da Polimerase , Vibrioses/prevenção & controle , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...